The Acquisition of Morphology

MORPHOLOGY: What is a grammatical morpheme?

Brown (1973) and his colleagues published several studies of inflectional development that have influenced the field of language acquisition for decades.

He referred to inflections, prepositions, etc. as **grammatical morphemes** and claimed that they...

... seem to ‘tune’ or ‘modulate’ the meanings associated with the contentives in the sense that the modulation is inconceivable without the more basic meanings. Thus ‘a’ and ‘the’ make the thing referred to by a noun specific or nonspecific (253).

Brown found that the three children he studied began producing morphological inflections at Stage II when their MLUs reached 2.0.

Linguistic features of grammatical morphemes:
1. They belong to small, closed classes, e.g., articles, plural, past tense, prepositions, pronouns
2. They are much more frequent than words from open classes
3. They have meaning in relation to words from lexical categories and are more complex semantically
4. They serve syntactic functions and, therefore, are more predictable than lexical words
5. They have less perceptual salience, i.e., they are unstressed and may not constitute full syllables
6. They show tremendous cross-linguistic variation, e.g., tense versus aspect, case versus agreement, head-marking versus dependent-marking

ni7-su7-sú7u7t'=lqs Upper Chehalis (Salish)
in_hair/bushes-out_of_control-stretch=nose
‘elephant’

Why study grammatical morphemes?
1. Their predictability makes it possible to accurately assess their acquisition by children
2. They provide further evidence for the development of linguistic rules
3. They provide evidence on the relative contributions of semantics, syntax, phonology, morphology and input frequency to language development
4. Their cross-linguistic variation provides a test for the role of Universal Grammar

Early Studies

Berko (1958)

Berko used a set of drawings to elicit children’s productions of nonsense words with their inflections. Her most famous drawing featured a bird-like creature she named a ‘wug’. Berko used the following protocol to elicit the plural form for wug:
This is a wug.

Now there is another one.
There are two of them.

There are two _____

Berko elicited forms with the following inflections:
- plural (with three allomorphs [s], [əz], [z])
- possessive (with three allomorphs)
- past (with three allomorphs [6d], [t], [d])
- progressive /-ing/
- agentive /-er/
- comparatives /-er/, /-est/
- compounds

She tested 19 children between 4 and 5 years old and 61 children between 5½ and 7 years old

Results (percentage of correct productions, Table 9.3, p. 441)

<table>
<thead>
<tr>
<th>Nouns</th>
<th>Verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plural</td>
<td>Past</td>
</tr>
<tr>
<td>glasses</td>
<td>[əz] 91</td>
</tr>
<tr>
<td>wugs</td>
<td>[z] 91</td>
</tr>
<tr>
<td>luns</td>
<td>[z] 86</td>
</tr>
<tr>
<td>tors</td>
<td>[z] 85</td>
</tr>
<tr>
<td>heafs</td>
<td>[s], [z] 82</td>
</tr>
<tr>
<td>cras</td>
<td>[z] 79</td>
</tr>
<tr>
<td>tasses</td>
<td>[əz] 36</td>
</tr>
<tr>
<td>gutches</td>
<td>[əz] 36</td>
</tr>
<tr>
<td>kazhes</td>
<td>[əz] 31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possessive</th>
<th>3rd singular</th>
</tr>
</thead>
<tbody>
<tr>
<td>nizzes</td>
<td>[əz] 28</td>
</tr>
</tbody>
</table>
The children had more correct responses with:
1. The single consonant allomorphs [s], [z], [t], and [d]
2. Real words, e.g., ‘glasses’, ‘melted’
3. The progressive
4. They did better with the possessive and 3rd singular [əz] than with the plural [əz]

Fraser, Bellugi & Brown (1963)

This study compared children’s imitation, comprehension and production of 10 grammatical contrasts.

Contrasts (Table 9.6)

1. Mass noun / Count noun
 Some mog / A dap
 Some pim / A ked
2. Singular / plural, marked by inflection
 The boy draws / The boys draw
 The kitten plays / The kitten plays
3. Singular / plural, marked by ‘is’ and ‘are’
 The deer is running / The deer are running
 The sheep is eating / The sheep are eating
4. Present progressive / past tense
 The paint is spilling / The paint spilled
 The boy is jumping / The boy jumped
5. Present progressive / future tense
 The girl is drinking / The girl will drink
 The boy is sitting / The boy will sit
6. Affirmative / negative
 The girl is cooking / The girl is not cooking
 The boy is sitting / The boy is not sitting
7. Singular / plural, of 3rd person possives
 His wagon / Their wagon
 Her dog / Their dog
8. Subject / object, in the active voice
 The train bumps the car / The car bumps the train
 The mommy kisses the daddy / The daddy kisses the mommy
9. Subject / object, in the passive voice
 The car is bumped by the train / The train is bumped by the car
 The daddy is kissed by the mommy / The mommy is kissed by the daddy
10. Indirect object / direct object
 The girl shows the cat the dog / The girl shows the dog the cat
 The boy brings the fish the bird / The boy brings the bird the fish
Subjects: 12 children between 37 and 43 months of age

Tasks:
1. Imitation—the children were asked to imitate the test sentences
2. Comprehension—the children were asked to choose an appropriate picture
3. Production—the children were asked to identify the ‘names’ of the pictures

Results (percentage of correct responses, table 9.7):

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Imitation</th>
<th>Comprehension</th>
<th>Production</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Affirmative / negative</td>
<td>75</td>
<td>71</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>7. Singular / plural of possessives</td>
<td>96</td>
<td>63</td>
<td>33</td>
<td>64</td>
</tr>
<tr>
<td>8. Subject / object in active voice</td>
<td>79</td>
<td>67</td>
<td>46</td>
<td>64</td>
</tr>
<tr>
<td>4. Present progressive / future tense</td>
<td>83</td>
<td>67</td>
<td>24</td>
<td>58</td>
</tr>
<tr>
<td>3. Singular / plural with ‘is’ and ‘are’</td>
<td>83</td>
<td>50</td>
<td>29</td>
<td>54</td>
</tr>
<tr>
<td>5. Present progressive / past tense</td>
<td>71</td>
<td>54</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>1. Mass noun / count noun</td>
<td>50</td>
<td>54</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>2. Singular / plural noun inflection</td>
<td>58</td>
<td>29</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>9. Subject / object in the passive voice</td>
<td>50</td>
<td>29</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>10. Indirect object / direct object</td>
<td>46</td>
<td>21</td>
<td>13</td>
<td>26</td>
</tr>
</tbody>
</table>

The results show an order
Imitation < Comprehension < Production

The production scoring might be overly strict (c.f., Fernald 1972)

Some production ‘errors’ reveal the limits of the scoring system, e.g., the replacement of the sentence ‘The woman gives the bunny the teddy’ with the sentence ‘The woman gives the teddy to the bunny’.

Five of the children responded to the passive sentences as if they were active sentences.
Cazden (1968)
She provided the first detailed analysis of inflectional development for Adam, Eve, and Sarah
She analyzed the children’s use of:
- plural
- possessive
- progressive
- present tense
- past tense

Cazden developed four measures of inflectional use:
- Sc: ‘supplied correctly’, e.g., ‘two dogs’ in reference to two dogs
- Sx: ‘supplied in inappropriate contexts’, e.g., ‘one dogs’ in reference to one dog
- O: ‘omitted’, e.g., ‘two dog’ in reference to two dogs
- OG: ‘overgeneralized’, e.g., ‘two foots’ in reference to two feet
These measures give rise to several proportions of inflectional use:
Proportion of correct use = \(\frac{Sc}{Sc + O} \)
Proportion of inappropriate use = \(\frac{Sx}{Sx + Sc} \)
Proportion of overgeneralization = \(\frac{OG}{Sc + Sx} \)

A high proportion of correct use may not be related to the child’s inappropriate or overgeneralized use of a morpheme.

The proportion of overgeneralization should be examined. Alternatives include:
1. \(\frac{OG}{Sc + OG} \) This is the most frequently used measure of overgeneralization
2. \(\frac{OG}{OG + Oi + Sc} \) Ingram’s suggestion
3. \(\frac{OG}{OG + Sc} \) This measure only includes the irregular forms the child produces

The proportion of inappropriate use should also be reexamined.

Cazden used the following contexts to determine the obligatory contexts for the plural inflection:
1. Following a number, e.g., ‘two ___’
2. Following certain modifiers, e.g., ‘more’, ‘some’
3. Following a reference to a plural reference, e.g., ‘What are those?’
4. Reference to items that are normally plural, e.g., ‘stair’, ‘scissor’
5. Routines with a plural in them, e.g. ‘Make penny Ema’ Hall’ (He’s making pennies in Emerson Hall)

It’s much easier to determine obligatory contexts for plural nouns than for definite determiners.

Cazden defined four periods in the development of each inflection:
A The time before the first use of the inflection
B The time of the first use of the inflection, with no errors
C The time of widespread use of the inflection, with the appearance of errors and overgeneralizations
D The proportion of correct use reaches 90 percent

These three divisions do not have the same status. The break between C and D is clearly an arbitrary imposition. The meaning of the break between A and B, signaling the onset of inflection, is unclear. But the break between B and C represents a significant developmental phenomenon, because systematic errors and overgeneralizations provide convincing evidence that the child has a productive rule. (Cazden, 228)

<table>
<thead>
<tr>
<th>Period</th>
<th>Prop. of correct use</th>
<th>No. of inappropriate use</th>
<th>No. of overgeneralization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adam</td>
<td>Eve</td>
<td>Sarah</td>
</tr>
<tr>
<td>A</td>
<td>---</td>
<td>0.00</td>
<td>---</td>
</tr>
<tr>
<td>B</td>
<td>0.36</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>C</td>
<td>0.68</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>D</td>
<td>0.94</td>
<td>0.98</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Ingram suggests children acquire a large number of inflected words before they learn a productive rule for inflection. This change didn’t occur until period D when the children used 927, 217, and 722 regular plural tokens.
He suggests that the children’s production of inappropriately inflected forms in period C is due to a lexical error that results from the confusion of two semantically related words, e.g., ‘dog’ and ‘dogs’. Some cases of inflectional omission could be due to the same confusion or retrieval error.

Cazden reports that the children initially used irregular forms correctly before they produced any overgeneralized forms. When the overgeneralizations appear, they do not replace the correct uses.

Ingram outlines the following three periods in the acquisition of inflection:

1. Acquire the inflected words as separate lexical entries, e.g., ‘come’, ‘came’
2. Acquire a general rule for regular inflection and use it to weed out the inflected lexical entries for regularly inflected pairs while retaining the irregular pairs with exceptional marking.
3. Strengthen the retrieval for the irregular lexical entries.

Cazden also tied a difference in the children’s language development to two different approaches: macrodevelopment and microdevelopment.

‘Macrodevelopment refers to the elaborateness of the semantic plan for speaking, while microdevelopment refers to the successful execution of whatever plan has been executed.’

(233-4)

Brown (1973)

Brown produced the definitive study of morphological development in English. He used a methodology that was similar to Cazden’s to analyze the development of 14 grammatical morphemes. He determined the children’s order of morpheme acquisition by using the percentage of obligatory morphemes supplied by the children.

Results (Table 9.10, p. 453 from Brown, Figure 14)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Adam</th>
<th>Eve</th>
<th>Sarah</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1.0</td>
<td>2;3</td>
<td>1;6</td>
<td>2;3</td>
</tr>
<tr>
<td></td>
<td>(none)</td>
<td>(none)</td>
<td>plural [-s]</td>
</tr>
<tr>
<td>II 2.0</td>
<td>2;6</td>
<td>1;9</td>
<td>2;10</td>
</tr>
<tr>
<td></td>
<td>progressive [-ing]</td>
<td>progressive [-ing]</td>
<td>‘in’, ‘on’</td>
</tr>
<tr>
<td></td>
<td>‘in’</td>
<td>‘on’</td>
<td>progressive [-ing]</td>
</tr>
<tr>
<td></td>
<td>‘on’</td>
<td>‘in’</td>
<td>past irregular</td>
</tr>
<tr>
<td></td>
<td>plural [-s]</td>
<td></td>
<td>possessive [-s]</td>
</tr>
<tr>
<td>III 2.5</td>
<td>2;11</td>
<td>1;11</td>
<td>3;1</td>
</tr>
<tr>
<td></td>
<td>uncontractible copula be</td>
<td>plural [-s]</td>
<td>uncontractible copula be</td>
</tr>
<tr>
<td></td>
<td>past irregular</td>
<td>possessive [-s]</td>
<td>articles ‘the, a’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>past regular [-ed]</td>
<td></td>
</tr>
<tr>
<td>IV 3.0</td>
<td>3;2</td>
<td>2;2</td>
<td>3;8</td>
</tr>
<tr>
<td></td>
<td>articles ‘the, a’</td>
<td>(none)</td>
<td>3rd person regular [-s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ages and morphemes at each stage</th>
<th>Adam</th>
<th>Eve</th>
<th>Sarah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I 1.0</td>
<td>2;3</td>
<td>1;6</td>
<td>2;3</td>
</tr>
<tr>
<td>Stage II 2.0</td>
<td>2;6</td>
<td>1;9</td>
<td>2;10</td>
</tr>
<tr>
<td>Stage III 2.5</td>
<td>2;11</td>
<td>1;11</td>
<td>3;1</td>
</tr>
<tr>
<td>Stage IV 3.0</td>
<td>3;2</td>
<td>2;2</td>
<td>3;8</td>
</tr>
</tbody>
</table>

3rd person irregular
possessive [-s] 4.0+ 3;6 3;6 4;0
3rd person regular [-s] uncontractible copula ‘be’ past regular [-ed]
past regular [-ed] past irregular uncontractible auxiliary be
uncontractible auxiliary be article ‘the, a’ contractible copula be
contractible copula be 3rd person regular [-s] 3rd person irregular
contractible auxiliary be 3rd person irregular contractible auxiliary be
uncontractible auxiliary be contractible auxiliary be
contractible auxiliary be

*These are listed in order of their decreasing percentages of obligatory occurrence

The children acquired the 14 morphemes in a statistically similar order

Explanation

A. Input frequency

Table 53 (p. 358) Acquisition order (children’s) and frequency rank orders for the 14 morphemes in the three sets of parents

<table>
<thead>
<tr>
<th>Children’s Morpheme Acquisition Order</th>
<th>Adam’s Parents</th>
<th>Sarah’s Parents</th>
<th>Eve’s Parents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Present progressive</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2.5. in</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2.5. on</td>
<td>14</td>
<td>9.5</td>
<td>7</td>
</tr>
<tr>
<td>4. Plural</td>
<td>5.5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5. Past irregular</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6. Possessive</td>
<td>13</td>
<td>9.5</td>
<td>9</td>
</tr>
<tr>
<td>7. Uncontractible copula</td>
<td>5.5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8. Articles</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9. Past regular</td>
<td>10</td>
<td>12</td>
<td>12.5</td>
</tr>
<tr>
<td>10. Third person regular</td>
<td>11.5</td>
<td>8</td>
<td>12.5</td>
</tr>
<tr>
<td>11. Third person irregular</td>
<td>11.5</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>12. Uncontractible auxiliary</td>
<td>8</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>13. Contractible copula</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14. Contractible auxiliary</td>
<td>9</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>
B. Syntactic and semantic complexity

In conclusion, both semantic and grammatical complexity to some extent predict the order of acquisition of the morphemes, but with the analyses of these variables currently available, it is impossible to separate out the relative contributions of each type of complexity since they make the same predictions. In fact, the order of acquisition may best be predicted by some combination of grammatical and semantic complexity, frequency, and perceptibility in speech. It is possible that no one factor can be considered of primary importance in determining the acquisition of the morphemes (de Villiers & de Villiers 1973.277).

Factors determining morpheme acquisition orders (O’Grady et al, Contemporary Linguistics)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Utterance-final position</td>
<td>Morphemes</td>
</tr>
<tr>
<td>2. Syllabicity</td>
<td>-ing</td>
</tr>
<tr>
<td>3. Stress</td>
<td>in, on</td>
</tr>
<tr>
<td>4. Obligatoriness</td>
<td>plural -s</td>
</tr>
<tr>
<td>5. Single function</td>
<td>possessive -’s</td>
</tr>
<tr>
<td>6. Regularity</td>
<td>the, a</td>
</tr>
<tr>
<td>7. Number of allomorphs</td>
<td>past tense -ed</td>
</tr>
<tr>
<td>8. Absence of homophones</td>
<td>third person -s</td>
</tr>
</tbody>
</table>

Assessment

Brown’s results are important in demonstrating a regular order for morphological development. The factors that determine this order remain a mystery.

Crosslinguistic Studies

K’iche’ (Pye 1980)

Grammatical Morphemes in K’iche’

Progressive (ka)tain(ik): tajin ketz’anik (They are playing)
 prog they-play

Preposition pa: k’oo pa lee atem (It is on your chair)
 exist in/on the your-chair

Plural taq: saq lee taq jah (The houses are white)
 white the pl. house

Compleitive aspect x: x-in-el-ik (I left)
 Comp-I-leave-TERM
Positional k’oolik: k’oo pa lee jah (It is in the house) exist in/on the house

Determiners: k’ax lee b’eh (The road is difficult) hard the road

Negative ma ... taj: ma niim taj lee lo?ch’ (The baby is not big) neg big neg the baby

Perfective: at r-il-om (S/he has seen you) you s/he-see-PERF

Proadverb of place: pa lee ja? xuriq wih (In the stream is where she found them) in/on the stream she-found PROADVERB

Examples of Morpheme Acquisition from Crosslinguistic Studies

K’iche’ (Pye 1983)

Verb Morphology
k-at-e:-in-q’al-u:j
Aspect-Abs2-GO-Erg1-HUG-Derivation
‘I’m going to hug you’

x-at-wa?-ik
Aspect-Abs2-EAT-Term
‘You ate’

What children produce:

A: la: utz kwiloh
Al Tiya:n (2;2): jah, loh (= jah, k-inw-il-oh ‘huh, I see it’)

A: kawarik
Al Tiya:n: lik (= ka-0-war-ik ‘he/she sleeps’)

Al Cha:y (2;9): loq’ ech wa7 (= ka-0-qa-loq’ q-e:ch wa7 ‘Can we buy it ourselves?’)

Al Cha:y: paj weh (= a: ka-0-a-sip-a:j chi-w-eh ‘Will you give it to me?’)

Inuktitut (Shanley Allen 1989)

illu-juaq-raaluk-mut-ur-lang-sima-nngit-nama-littauq
house-big-very-ALL-go-PAST-PERF-NEG-1sS,PERF-but_also
‘but also, because I never went to the really big house.’

Jaaji (1;9, MLU 1.3) produced nouns—for people and animals
uuta-up
rhoda-3ERG
‘Rhoda’s’
at 2;1, MLU 1.9 increased from 11 to 44 verb types; verb inflections increased from 2 to 34
haanta-langa-vita Sikituq-nuguaq-ga
honda-FUT-1pP.INTERR skidoo-toy-my
‘Are we going to ride the Honda?’ ‘My toy skidoo’

Juupi (2;2)
kunik-jau-guma-ngit
kiss-PASS-want-NEG
‘(I) don’t want to be kissed’

Many affixes became productive at 2;5 (including the participative, indicative, perfective)
Imperative was productive at 2;1

Turkish (Ayhan Aksu-Koç & Dan Slobin 1985)

Children acquire agglutinative affixes very early

2;1 getir-me-di-n
bring-NEG-PAST-2sG
‘You didn’t bring’

2;4 ağla-dI-lar
cry-PAST-PL
‘They cried’

Evidence of productive use of some inflections by 15 months
bit-ti
finish-PAST
‘All gone’

Current Approaches to the Acquisition of Morphology

Pinker (1984; 1999)

How do children identify morphemes and their functions?
Why past tense rather than completive aspect, animacy, control, degree of certainty, etc.?

Exhaustive Hypothesization
Children first attach all possible meanings to the inflection
Then they eliminate the meanings that are incompatible with the morpheme’s context

Problems:
1. The method requires too much memory (and be discontinuous with adult grammar)
2. It falsely predicts that children will acquire fusional inflections faster than isolating ones,
 e.g., German article die (which marks gender, number and case) before English the
3. It falsely predicts that children will not overgeneralize inflections

Hypothesis Sampling
Children test selected meanings for inflections from a weighted list of all possible meanings
They gradually eliminate the incompatible meanings and test new meanings
Advantages:
1. The method predicts that children will acquire isolating morphology faster than fusional
2. It predicts that children will first attach a single function to morphemes
3. It predicts that children will acquire common inflections (aspect) before uncommon inflections (Navajo shape classifiers)

Problems:
1. The method does not provide an account of the segmentation process
2. It cannot account for the acquisition of zero morphemes: I/you walk-0, s/he/it walk-s
3. It cannot account for the acquisition of arbitrary inflectional classes, e.g. gender
4. It cannot account for overlapping inflections (i.e., syncretism), e.g.,
 Masc. Nom. agricola
 Masc. Gen. agricola
g. Masc. Dat. agricola
5. The model predicts that English-speaking children will test a Navajo classifier system
6. The model does not explain how children eliminate overgeneralized forms

Paradigm Construction (Pinker’s solution)
Children first construct word-specific mini-paradigms for fully inflected words by choosing a ‘linguistically relevant feature’ as a basis for the paradigm
Children add new dimensions to their paradigms to resolve feature conflicts, e.g.,

<table>
<thead>
<tr>
<th>Masc.</th>
<th>Nominative</th>
<th>Genitive</th>
<th>Dative</th>
</tr>
</thead>
<tbody>
<tr>
<td>agricola</td>
<td>agricola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>agricola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>agricola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masc.</td>
<td>agricola</td>
<td>agricola</td>
<td>agricola</td>
</tr>
<tr>
<td>agricola</td>
<td>agricola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>agricola</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Once children construct a number of word-specific paradigms they extract general paradigms

<table>
<thead>
<tr>
<th>Masc.</th>
<th>Nominative</th>
<th>Genitive</th>
<th>Dative</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>-ae</td>
<td>-ae</td>
<td></td>
</tr>
</tbody>
</table>

Finally, children can construct a morphological template:

\[
[_X \text{ Stem } + \text{ affix (+ affix + . . .)}] \\
\text{DIM-1} \quad \text{DIM-2}
\]

Advantages:
1. It solves the syncretism problem by adding new dimensions to resolve feature conflicts
2. It accounts for the acquisition of arbitrary inflectional classes–adds a new dimension
3. It solves the problem of learning rare inflections by highlighting formal distinctions
4. It solves the segmentation problem through specific and general paradigms
5. It uses the uniqueness principle to constrain overgeneralization

Problems:
1. The model still relies on children’s ability to choose ‘linguistically relevant features’
2. The model builds paradigms for walk-wade as easily as walk-walks
3. The model does not account for morpheme acquisition orders

Assessment
Pinker provides a thorough discussion of major issues relevant to the acquisition of morphology. The paradigm construction model is a refined version of Maratsos & Chalkley’s distributional learning model, but restricted to the acquisition of morphology.

Single and Dual Mechanisms (Rumelhart & McClelland 1987; Marcus et al. 1992)

Rumelhart & McClelland proposed a pattern association model for the acquisition of past tense that used a single learning mechanism for regular and irregular forms. Their model generalized past tense forms on the basis of verb type frequencies in the input.

Pinker and his coworkers proposed a dual mechanism model for the acquisition of past tense morphology in English.

1. Regular past tense involves the acquisition of a rule that is generalized to all verbs.
2. Irregular past tense requires the storage and retrieval of irregular forms that block the application of the regular past tense rule.

Both models attempt to explain the **U-shaped development curve** for the irregular past tense.

Single mechanism: input frequencies of regular and irregular verbs.
- Rumelhart & McClelland started with 10 frequent verbs, 8 were irregular past tense verbs.
- They next fed in 410 verbs, 80 percent were regular past tense verbs.

Dual mechanism: acquisition of regular rule followed by strengthening of irregular retrieval.
- Marcus et al. report that the average overgeneralization rate was 4 percent.
- Overgeneralization errors were evenly distributed across the children’s irregular verbs.
- Overgeneralization rates were inversely proportional to the verbs’ input frequencies.
- Children’s overgeneralization errors replace omission errors rather than correct forms.
- Overgeneralization was not related to the density of regular phonemic neighbors.
- Overgeneralization was inversely related to the density of irregular phonemic neighbors.

Assessment

Research on overgeneralization errors has been invaluable in revealing the development of association patterns and rules for inflection. Two limitations are apparent in this work:

1. A focus on the use of a single inflection in isolation from the rest of the grammar.
2. A focus on English, which makes a simple division between regular and irregular forms.
3. The dual mechanism model doesn’t account for overgeneralization errors among the irregular past tense forms (Bybee & Slobin 1982).

The second limitation has been addressed to some extent by work on German. German has five plural forms: -en, -s, -e, -er, and 0; three of these also appear with umlaut:

<table>
<thead>
<tr>
<th></th>
<th>der Daumen</th>
<th>die Daumen</th>
<th>thumbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>umlaut + 0</td>
<td>die Mutter</td>
<td>die Mütter</td>
<td>mothers</td>
</tr>
<tr>
<td>-e</td>
<td>der Hund</td>
<td>die Hunde</td>
<td>dogs</td>
</tr>
<tr>
<td>umlaut + -e</td>
<td>die Kuh</td>
<td>die Kühe</td>
<td>cows</td>
</tr>
<tr>
<td>-er</td>
<td>das Kind</td>
<td>das Kinder</td>
<td>children</td>
</tr>
</tbody>
</table>
The German plural paradigm contains several subregularities:
- *-en* is the usual plural for feminine nouns and masculine nouns with genitive sing.
- *-e* is used with nouns that end with a sibilant
- *-s* is used when none of the other endings apply; it serves as the ‘default’ form of the plural.

Marcus et al. (1995) claim that association learning accounts for the subregular patterns, but a rule accounts for the *-s* plural even though it is only used with 4 percent of German nouns.

Behrens (2002) found that German children overgeneralize several plural forms, not just *-s*.

References

Prosodic Constraints (Demuth 1994; Gerken 1991; Pye 1983; Slobin 1973)

Children’s difficulty in using grammatical morphemes is tied to their difficulty in producing the morpheme. English-speaking children are more likely to produce either stressed words or parts of words with a trochaic foot (a strong-weak stress pattern). Children tend to omit the initial unstressed syllable of iambic feet (with a weak-strong stress pattern), or unstressed syllables preceding a trochaic foot (Demuth 1994):

- stressed monosyllabic foot: [s] ball
- trochaic foot: [s w] dolly
- iambic foot: [w s] the ball
- trochaic foot + pretonic syllable: w [s w] the dolly

English auxiliaries typically appear as unstressed syllables before the main verb, and are therefore likely to be deleted by children:

We have seen that.
What is making that noise?
K’iche’ places the main stress on the final syllable of words. K’iche’ children tend to omit the initial syllables of words. They will produce the verb k’oo-l-ik (exist-positional-termination) as lik. Adults drop the final syllable of the verb when the verb is followed by a particle such as the one for negation (k’oo taj ‘It is not there’). In the same contexts, K’iche’ children also use the initial syllable of the verb and produce k’oo taj. Thus, K’iche’ children actually know and produce both syllables of the verb, but omit the initial syllable of words with an iambic foot.

Forms of *k’oolik* in the K’iche’ children’s early language samples (number of tokens)

<table>
<thead>
<tr>
<th>Clause-medial</th>
<th>Clause-final</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>k’oo lik</td>
</tr>
<tr>
<td>Al Tiyaan</td>
<td>26</td>
</tr>
<tr>
<td>Al Chaay</td>
<td>65</td>
</tr>
<tr>
<td>A Carlos</td>
<td>13</td>
</tr>
</tbody>
</table>

Leonard, Bortolini, Caselli, McGregor & Sabbadini 1992 analyzed the acquisition of morphology by children learning English, Italian and Hebrew. They found that children acquired specific morphemes earlier in Italian and Hebrew:

<table>
<thead>
<tr>
<th></th>
<th>English</th>
<th>Italian</th>
<th>Hebrew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articles</td>
<td>62</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Third person present</td>
<td>59</td>
<td>93</td>
<td>79</td>
</tr>
<tr>
<td>Plurals</td>
<td>96</td>
<td>89</td>
<td>74</td>
</tr>
</tbody>
</table>

Advantages:
1. The model predicts morpheme omissions and morpheme acquisition orders
2. It accounts for the gradual increase in morpheme use
3. It can be applied cross-linguistically and is supported by data from various languages
4. It assumes that children already know most of the features of the morphemes they use

Problems:
1. The model still lacks a complete account of the relative contributions of stress patterns, syllable structure, utterance position, etc.
2. The model cannot account for the use of filler syllables that children produce in various languages, e.g., Inuktitut -mi (Crago & Allen 1996:268).

Assessment

Any account of morpheme acquisition will have to consider how production difficulties constrain children’s use of inflection. The prosodic constraints hypothesis provides a limited account of production constraints, but lacks a complete theory of how specific features interact to constrain production. The prosodic constraints model also lacks an account of how production constraints interact with children’s grammars although it predicts that children will use inflections accurately from the beginning of inflectional development.

References

Wexler (1994, 1996, 1998) accounts for the lack of tense and agreement inflections by assuming children lack the ability to ‘check’ inflectional features for subjects. Wexler assumes that subject noun phrases move to Spec IP to check their features against the head of the inflectional phrase.

(1) Inflectional structure for English

```
AgrSP
   Spec
   DP_{Subj}
   AgrS
   TP
   Spec
   T_{Subj}
   Tense
   VP
   t_{Subj}
   V
   DP_{Obj}
```

The subject checks its ‘D-feature’ in both Tense and AgrS by moving to the Specifier position in these phrases. The verb’s features may be checked by moving the verb to the head of the corresponding functional projections (Tense and AgrS). Wexler (1998) assumes that initially children can only check the subject’s D-feature once. Since the D-feature must be checked twice in English, this limitation prevents children from producing a finite form of the verb. Instead, children use an infinitive verb form in the root clause (hence the term root infinitive).

E.g., Dis go right here (Adam 3;3)

Predictions from the Root Infinitive Hypothesis:
1. Children will use infinitive verb forms as a default in simple sentences
2. Children will sometimes omit auxiliary and copular verbs that only carry tense features
3. Children will inflect auxiliary verbs in moved positions, e.g. yes-no questions, negation
4. Children will use non-nominative subject pronouns with root infinitives
5. Children learning languages with overt verb movement will only inflect moved verbs

E.g., French (Pierce 1992)

\[
\begin{array}{l}
[+ \text{finite}] \\
[- \text{finite}] \\
Patsy est pas là-bas & pas manger la poupee \\
Patsy is not down there & not eat the doll
\end{array}
\]

Children’s data

<table>
<thead>
<tr>
<th>+ finite</th>
<th>- finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>pas Verb</td>
<td>11</td>
</tr>
<tr>
<td>Verb pas</td>
<td>185</td>
</tr>
</tbody>
</table>

6. Children acquiring languages with ‘rich’ inflection (Spanish, Italian) will not use root infinitives since they only need to check the subject’s D-features once.

Advantages:

1. The theory makes specific predictions about the interaction of morphology and syntax
2. It predicts a link between subject use, case and agreement
3. It makes predictions for languages with ‘rich’ inflection and verb movement

Problems:

1. The theory does not define ‘infinitive’
 Many languages lack an ‘infinitive’ and use deverbal nouns:
 K’iche’ x-Ø-u-chap (u)-b’iin-eem
 compl-3Abs-3Erg-begin (3Erg)-travel-nominal
 ‘He/she began (his/her)-traveling.’

2. The theory does not define ‘rich’ inflection
 Danish has distinct present tense, past tense and infinitive verb forms:
 \[
 \begin{array}{l}
 \text{infinitive} & \text{køb-e ‘to buy’} \\
 \text{imperative} & \text{køb} \\
 \text{present tense} & \text{køb-er} \\
 \text{past tense} & \text{køb-de}
 \end{array}
 \]

 Danish also does not permit subject drop:
 \[
 ??? \text{har ikke købt bogen} \\
 \text{has not bought the book}
 \]

 Despite these features, children acquiring Danish only begin using infinitives AFTER their finite verb morphology becomes productive (Plunkett & Strömqvist 1990).

3. English-speaking children use \text{don’t} with third person subjects (Sano 1999),
E.g., he don’t use your eyes (Nina 2;1.29)

4. The theory does not account for morpheme acquisition orders

5. The theory does not account for the other missing elements in children’s sentences, e.g., verbs

6. The theory does not account for the gradual increase in morpheme use (Brown 1973).

References

Truncation (Rizzi 1993/4)

Rizzi accounts for the missing elements in children’s sentences by assuming that they do not produce complete tree structures. In particular, root infinitives lack the Tense projection.

Predictions:
1. The temporal interpretation of root infinitives is fixed by the context of the utterance
2. Auxiliary verbs cannot occur in root infinitives
3. Wh-questions cannot occur with root infinitives
4. Pronoun case would not be checked in root infinitives
5. Children’s sentences may have null subjects, but not null objects

Problems:
1. The theory assumes a discontinuity between child and adult grammars
2. The theory does not account for morpheme acquisition orders
3. The theory does not account for the gradual increase in morpheme use
4. The theory does not account for the other missing elements in children’s sentences, e.g., verbs

References